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A balanced measure shows superior perfor-
mance of pseudobulk methods in single-cell
RNA-sequencing analysis

Alan E. Murphy 1,2 & Nathan G. Skene 1,2

ARISING FROM Zimmerman, K. D., Espeland, M. A. & Langefeld, C. D. Nature
Communications https://doi.org/10.1038/s41467-021-21038-1 (2021)

Recently, Zimmermanet al.1, highlighted the importanceof accounting
for the dependence between cells from the same individual when
conducting differential expression analysis on single-cell RNA-
sequencing data. Their work proved the inadequacy of pseudor-
eplication approaches for such analysis—this was an important step
forward that was conclusively proven by them. However, there appear
to be limitations in both their benchmarking and simulation approa-
ches. Here, we corrected these issues, reran the author’s analysis and
found that pseudobulk methods outperformed mixed models. Based
on these findings, we recommend the use of pseudobulk approaches
for differential expression in single-cell RNA-sequencing analyses.

Zimmerman et al.1, performed a systematic analysis of differential
expression methods’ type-1 error rates; the proportion of non-
differentially expressed genes indicated as differentially expressed
by a model. Their analysis was conducted on simulated, single-cell
expressiondata across 20,000 iterations. The authors tested iterations
of 5–40 individuals and 50–500 cells using an unadjusted p-value cut-
off of 0.05 for significance. Plotting the results showed pseudobulk
approaches had the lowest type-1 error at every iteration (Supple-
mentary Fig. 1). However, evaluating such models on their type-1 or
type-2 error rate in isolation is insufficient to determine their true
performance. For example, a method with low type-1 error may have a
high type-2 error rate. Therefore, we need to consider both type-1 and
type-2 error rate to accurately benchmark the models. Moreover,
because no seed was set for the pseudo-random number generator
used in their hierarchical single-cell expression simulation approach
(hierarchicell), the different methods evaluated by Zimmerman et al.
were compared on different simulated datasets. Here, we modified
Zimmerman et al.’s hierachicell approach to simulate both differen-
tially expressed and non-differentially expressed genes. The differen-
tially expressed genes were randomly simulated with a fold change
between 1.1 and 10. We further modified hierachicell to correct the
seeding of the pseudo-random number generator to enable fair com-
parisons across models.

We tested the models using the Matthews Correlation Coeffi-
cient (MCC) giving a balanced measure of performance. MCC is a

well-known and frequently adopted metric in the machine learning
field, which offers a more informative and reliable score on binary
classification problems2. MCC produces scores in [−1,1] and will only
assign a high score if a model performs well on both non-
differentially and differentially expressed genes. Moreover, MCC
scores are proportional to both the size of the differentially and non-
differentially expressed genes, so it is robust to imbalanced data-
sets. We also benchmarked the models using receiver operating
characteristics (ROC) curves for different proportions of differen-
tially expressed genes.

Our MCC analysis demonstrates that pseudobulk approaches
achieve highest performance across individuals and cells variations
(Fig. 1). There is one exception for sum pseudobulk, which performs
worse than Tobit at 5 individuals and 10 cells. Figure 1 also highlights a
trend whereby pseudoreplication models; ‘Modified t’, ‘Tobit’, ‘Two-
part hurdle: Default’ and ‘Two-part hurdle: Corrected’ (which take cells
as independent replicates) showed increasingly poor performance as
the number of cells increases. This trend is likely due to the over-
estimation of power driven by the dependence between cells from the
same individual3 and agrees with Zimmerman et al.’s findings1. On the
other hand, both pseudobulk approaches; ‘Pseudobulk: Mean’ and
‘Pseudobulk: Sum’, showed improved performance as the number of
cells increases. This trend was also noted in two of the other models;
‘GEE1’ and ‘Tweedie: GLMM’.

Moreover, for statistical test comparisons, another approach is to
compare the power of tests at the same test size. That is, to compare
themodels’ sensitivity (1–type-2 error) at a consistent type-1 error rate.
Therefore, we generated ROC curves for the different approaches,
enabling such comparisons. For example, in Supplementary Fig. 2, we
highlight the different sensitivity scores (1–type-2 error) of themodels
obtained at a consistent type-1 error rate of 0.05. We find that pseu-
dobulk mean performs best at this type-1 error rate (with a sensitivity
>0.9, whereas all other methods had <0.9) and at all other type-1 error
rates (Fig. 1). Interestingly, we show that the two mixed model
approaches (‘Two-part hurdle: RE’ and ‘GLMM Tweedie’) perform
relatively poorly even compared to some pseudoreplication
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approaches. This analysis demonstrates how pseudobulk mean
obtains low type-2 error rates, even at the lowest type-1 error rates of
the methods benchmarked, supporting our MCC results.

Zimmerman et al. argued that pseudobulk methods are “overly
conservative” relative to mixedmodels in their work. Specifically, they
refer to pseudobulk approaches’ lower than nominal levels of type-1
error rates, demonstrated in their results where, based on a consistent
p-value cut-off of 0.05, they benchmark the performance of different
methods at identifying non-differentially expressed genes (Supple-
mentary Fig. 1). Their analysis showed pseudobulk approaches’ type-1

error rates were below the expected 0.05 of false positives at each
number of individuals and number of cells combination. In this ana-
lysis, it is true that pseudobulk approaches have mis-calibrated con-
fidence intervals, obtaining fewer false positives than expected at a
0.05 p-value cut-off. Given this conservative 95% confidence intervals
of pseudobulk methods, they could, as a result, have a higher type-2
error thanothermethods. However, our ROC analysis disproves this. It
shows how, at equal type-1 error rates, pseudobulk mean has the
lowest type-2 error rate of all tested methods (Fig. 1, Supplemen-
tary Fig. 2).
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Fig. 1 | Performance of the analysed models. a, b give the average Matthews
correlation coefficient from the 20,000 iterations; 50 runs for each of the 5–40
individuals and 50–500 cells at a p-value cut-off of 0.05 on 10,000 genes. a shows
all benchmarkedmodels whereasb focuses on the top four approaches. c gives the
receiver operating characteristics (ROC) curve across 50 runs each for different
proportions of simulated differentially expressed genes (DEGs)—0.05, 0.1, 0.2, 0.3.
Twenty individuals were simulated for case and controls, each with 100 cells. The

performance split by each iteration is given in SupplementaryTable 2. The different
models are pseudoreplication approaches; ‘Modified t’, ‘Tobit’, ‘Two-part hurdle:
Default’, ‘Two-part hurdle: Corrected’, ‘GEE1’, ‘Tweedie: GLM’, pseudobulk
approaches; ‘Pseudobulk: Mean’, ‘Pseudobulk: Sum’ and mixedmodel approaches;
‘Tweedie: GLMM’ and ‘Two-part hurdle: RE’. More detail on thesemodels is given in
Supplementary Table 1. Source data are provided as a Source Data file.
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All analysis to this point have been on simulations with an equal
number of cells in each sample. However, in real datasets this would
never be the case4. To mirror this, we simulated data with an
imbalanced number of cells between case and controls. We find that
pseudobulk mean outperforms all other approaches on this analysis
(Supplementary Fig. 3). The pseudobulk approachwhich aggregated
by averaging rather than taking the sum appears to be the top per-
forming overall. However, it is worth noting that hierarchicell does
not normalise the simulated datasets before passing to the pseu-
dobulk approaches. This is a standard step in such analysis to
account for differences in sequencing depth and library sizes5. This
approach was taken by Zimmerman et al. as their data are simulated
one independent gene at a time without considering differences in
library size. The effect of this step is more apparent on the imbal-
anced number of cells where pseudobulk sum’s performance
degrades dramatically. Pseudobulk mean appears invariant to this
missing normalisation step because of the averaging’s own nor-
malisation effect. Importantly, this was a flaw in the simulation
software strategy and does not show an improved performance of
pseudobulk mean over sum. We believe this approach also affected
the performance of pseudobulk sum on the different proportions of
differentially expressed genes (Fig. 1).

Pseudobulk approaches were also found to be top performing
in a recent review by Squair et al.,6. Notably, the pseudobulkmethod
used here, DESeq25, performed worse than other pseudobulk
models in Squair et al.,’s analysis and so their adoption may further
increase the performance of pseudobulk approaches on our data-
set. Conversely, Squair et al., did not consider all models included in
our analysis or the different forms of pseudobulk aggregation.
Therefore, our results on sum and mean pseudobulk extend their
findings and indicate that mean aggregation may be the best per-
forming. However, the reader should be cognisant that the lack of a
normalisation step based on the flaw in the simulation software
strategy likely causes the increased performance of mean over sum
aggregation. Further, the use of simulated datasets in our analysis
may not accurately reflect the differences between individuals that
are present in biological datasets. Thus, despite both our results
and those reported by Squair et al., there is still room for further
analysis, benchmarking more models, including different combi-
nations of pseudobulk aggregation methods and models, on more
representative simulated datasets and biological datasets to iden-
tify the optimal approach. Specifically, we would expect pseudo-
bulk sum with a normalisation step to outperform pseudobulk
mean since it can account for the intra-individual variance which is
otherwise lost with pseudobulk mean, but this should be tested,
including on imbalanced datasets and at consistent type-1
error rates.

In conclusion, our results demonstrate that pseudobulk approa-
ches lead to the best performance for the analysis of single-cell
expression data based onpower at equivalent type-1 error rates and on
MCC for both balanced and imbalanced number of cells, from this
simulated dataset.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data underlying Fig. 1 (Bottom) and Supplementary Fig. 2 are
available at https://github.com/Al-Murphy/reanalysis_scRNA_seq_
benchmark (DOI7). All other relevant data supporting the key find-
ings of this study are available within the article and its Supplementary
Information files or from the corresponding author upon reasonable
request. Source data are provided with this paper.

Code availability
The modified version of hierarchicell which returns the Matthews
correlation coefficient performance metric as well as the type-1 error
rates, uses the same simulated data across approaches and has
checkpointing capabilities (so runs can continue from where they left
off if aborted or crashed) is available at: https://github.com/
neurogenomics/hierarchicell (DOI8). The benchmarking script along
with the results is available at: https://github.com/Al-Murphy/
reanalysis_scRNA_seq_benchmark (DOI7).
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Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.
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