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Abstract 

To understand the complex relationship between histone mark activity and gene expression, recent advances have used in silico predictions 
based on large-scale machine learning models. Ho w e v er, these approaches ha v e omitted k e y contributing f actors lik e cell state, histone mark 
function or distal effects, which impact the relationship, limiting their findings. Moreo v er, do wnstream use of these models f or ne w biological 
insight is lacking. Here, we present the most comprehensive study of this relationship to date – investigating seven histone marks in eleven cell 
types across a diverse range of cell states. We used con v olutional and attention-based models to predict transcription from histone mark activity 
at promoters and distal regulatory elements. Our work shows that histone mark function, genomic distance and cellular states collectively 
influence a histone mark’s relationship with transcription. We found that no individual histone mark is consistently the strongest predictor of 
gene expression across all genomic and cellular conte xts. T his highlights the need to consider all three factors when determining the effect of 
histone mark activity on transcriptional state. Furthermore, we conducted in silico histone mark perturbation assa y s, unco v ering functional and 
disease related loci and highlighting frame w orks f or the use of chromatin deep learning models to unco v er ne w biological insight. 
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ntroduction 

ost-translational modifications on the N-terminal tails of hi-
tone proteins, known as histone marks, form a key epigenetic
echanism by which eukaryotic cells regulate transcriptional
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are mediated by both internal and extracellular cues ( 3 ,4 ). Al-
terations in histone modifications have been found to strongly
associate with cellular differentiation, cell cycle stages and the
development of different diseases ( 5–8 ). For example, as cells
mature and differentiate, chromatin accessibility and histone
acetylation become progressively restricted throughout their
lineage ( 9 ). 

Individual regulatory effects of histone marks on transcrip-
tion have been widely studied: while H3K9ac is associated
with active promoter regions ( 10 ), H3K4me1 is found at dis-
tal enhancers ( 11 ). However, less emphasis has been placed
on the extent to which these histone marks directly regu-
late gene expression levels. To investigate if transcriptional
levels in different cellular contexts can be determined solely
from histone modification states, one could correlate levels
of histone modifications in regulatory elements with messen-
ger RNA (mRNA) expression individually. However, this ig-
nores two additional levels of complexity: firstly, it is well-
known that histone modifications interact with other epige-
netic factors such as pioneer transcription factors, which in
turn have been linked to enhancer activation ( 9 ); secondly, hi-
stone marks themselves act in concert and the interaction be-
tween different regulatory elements is not necessarily additive.
To circumvent these challenges it is possible to conduct in sil-
ico experiments, predicting transcriptional levels from histone
mark signals where the observed chromatin state is assumed
to capture the other contributing epigenetic regulators with-
out directly experimentally observing them. 

This method has been applied in previous work, to investi-
gate which histone mark is most predictive of gene expression.
For example, addressing this over 10 years ago, Karli ́c et al.
( 12 ) used a linear regression model but only considered his-
tone mark levels at promoter regions, and only tested the effect
in a single cell type, CD4 + T-cells. González-Ramírez and col-
leagues ( 13 ) identified predictive histone marks at promoters
and other regulatory regions, leveraging chromatin interac-
tion data from a Hi-C assay to link enhancers to target genes.
However, this study also only considered one cell type, mouse
embryonic stem cells (ESCs). Moreover, there is some circular-
ity in the selection of training regions based on derived (from
their histone mark data) promoter and enhancer locations and
the model’s input measuring the same histone mark levels. Fi-
nally, Wang et al. ( 14 ), investigated the relationship between
histone marks and transcription but inverted the problem, pre-
dicting histone mark levels from transcription. For transcrip-
tion, they used Pro-seq and GRO-seq, which labels RNA as
it is being transcribed, avoiding issues with RNA degradation
( 14 ,15 ). The authors used a Support Vector Regression model
but again only investigated relationships in the K562 cell line.

Here, we expand on previous research by considering mul-
tiple cell types, histone marks and regulatory distances. We
investigated the effects of seven histone marks on gene ex-
pression (Table 1 ) in eleven human cell or tissue types from
the Roadmap Epigenomics Consortium ( 16 ). We will refer to
these as cell types hereafter, but note that they also contain
tissue samples and cell lines. We used two neural network ar-
chitectures to predict gene expression: a simple convolutional
neural network considering genes promoter regions, and a re-
cently published transformer-based, DNA interaction-aware
deep learning architecture called Chromoformer ( 17 ) (see as-
sociated publication, figure 1 for architecture). Chromoformer
was originally trained to predict expression using seven his-
tone marks. Here we adapt and retrain the model to predict
based on single histone marks, and pairwise combinations of 
histone marks, to investigate their effect on transcription in 

isolation. Our work highlights how histone mark function,
cellular differentiation and genomic distance to regulatory el- 
ements all collectively influence the relationship between hi- 
stone modification levels and gene expression. We find that 
there is no universal histone mark which is consistently the 
most predictive of expression. We recommend that researchers 
consider all three of these influencing factors when determin- 
ing the effect of histone mark levels on the transcriptional state 
of a cell in their work. 

In the related field of genomic deep learning, models predict 
expression or epigenetic marks from DNA sequence, such as 
Enformer ( 18 ), Borzoi ( 19 ) and Sei ( 20 ). There has been a re-
cent shift away from arbitrarily benchmarking performance,
to prioritizing the use of these models to make new biologi- 
cal discoveries ( 21–23 ). This is still lacking for models link- 
ing histone mark levels to expression. We aim to address this 
by outlining a framework to use these models to identify the 
cell type-specific functional and disease related genomic loci,
leading to new biological insights and expanding the utility of 
these models beyond simple investigation into which histone 
marks are the most predictive of gene expression. 

Materials and methods 

Data collection and processing 

The data for our analysis was derived from the Roadmap 

Epigenomics Consortium ( 16 ) and follows the same prepro- 
cessing pipeline used by Chromoformer ( 17 ). We used a subset 
of eleven cell types from Roadmap, for which gene expression,
histone mark and 3D chromatin interactions profiles were 
available ( Supplementary Table S1 ). Specifically we included 

data from H1 ESCs (E003), H1 BMP4-derived mesendoderm 

(E004), H1 BMP4-derived trophoblast (E005), H1-derived 

mesenchymal stem cells (E006), H1-derived neuronal progen- 
itor cultured cells (E007), HUES64 ESCs (E016), Liver (E066),
Pancreatic islets (E087), A549 EtOH 0.02pct lung carci- 
noma (E114), GM12878 lymphoblastoid (E116) and HepG2 

hepatocellular carcinoma (E118). TagAlign-formatted, ChIP- 
seq read alignments for seven histone marks – H3K4me1,
H3K4me3, H3K9me3, H3K27me3, H3K36me3, H3K27ac 
and H3K9ac were used. For consistency, the data was sub- 
sampled to 30 million reads and reads themselves were trun- 
cated to 36 base-pairs, reducing possible read length biases.
The alignments were sorted and indexed using Sambamba 
( 40 ) v0.6 and read depths for each base-pair position were 
derived along the hg19 reference genome using Bedtools ( 41 ) 
v2.23. Note that our goal was to predict the transcriptional 
signal in the same experimental conditions; same experi- 
ment, same histone mark(s), same cell type while holding 
out subsets of chromosomes. Thus, the experimental condi- 
tions were the same for the training and test sets and we 
did not compare across experiments to avoid any issues with 

experimental variance in signal / noise ratios or sequencing 
depths. 

Both the promoter and distal models used the averaged 

log 2 -transformed 100 base-pair binned signal with our dis- 
tal model also averaging at 500 and 2000 base-pairs to also 

use as model input features. Using three different resolutions 
of the histone mark signal in the distal model is intended to 

represent prior knowledge that epigenetic regulation operates 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1212#supplementary-data
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Table 1. Information on the primary genomic location, transcriptional relationship and proposed function for the seven histone marks used to predict 
expression 

Histone mark Genomic location 
Transcriptional 
relationship Proposed function References 

H3K4me1 Activating • Enriched at active and poised 
enhancers. 
• Suggested to fine-tune, rather than 
tightly control, enhancer activity and 
function by recruiting key transcription 
factors. 

( 11 ,24 ) 

H3K4me3 Activating • Found at promoter regions 
• Has a direct preferential association 
with the Plant HomeoDomain (PHD) 
finger of nucleosome remodelling factor 
complex which remodels chromatin, 
making the DNA accessible for gene 
transcription. 

( 25 ,26 ) 

H3K9me3 Repressive • Involved in the formation of 
heterochromatin, 
• Found at transposable elements, 
satellite repeats and genes, where it 
ensures transcriptional silencing. 
• These heterochromatin has also been 
found to relate to cell lineage-dependent, 
transcriptional silencing. 

( 27–29 ) 

H3K27me3 Repressive • Act as silencers in promoters and gene 
bodies that regulate gene expression via 
proximity or looping. 
• Function has been linked to Polycomb 
repressive complexes (PCR1, PCR2) 
which can be recruited and contribute 
to chromatin compaction. 

( 30–33 ) 

H3K36me3 Repressive • Enriched in gene bodies. 
• A binding partner for histone 
deacetylases (HDACs) which prevent 
run-away RNA polymerase II (Pol II) 
transcription. 

( 34–36 ) 
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Table 1. Continued 

Histone mark Genomic location 
Transcriptional 
relationship Proposed function References 

H3K27ac Activating • Enriched at active enhancer and 
promoter regions (differing from 

H3K4me1 which also indicates poised 
enhancers). 
• Recruits transcription factors to 
increase transcription. For example, 
bromodomain-containing protein 4 
(BRD4) which enhances Pol II 
recruitment and increases transcription. 

( 37 ,38 ) 

H3K9ac Activating • Enriched at promoter regions. 
• Mediates super elongation complex 
and pol II chromatin occupancy on the 
proximal promoter region thus aiding in 
the switch from transcription initiation 
to elongation. 

( 10 ,39 ) 
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on differing scales and has been shown to improve perfor-
mance of other models ( 42 ). Promoter-capture Hi-C 3D chro-
matin interaction data ( 43 ) was incorporated into the distal
model and mapped to the Roadmap cell types using the same
approach as previously described for Chromoformer ( 17 ).
Reads per kilobase of transcript, per million mapped reads
(RPKM)-normalized gene expression levels from protein cod-
ing genes were downloaded from Roadmap for the matching
cell types. Both the promoter and distal models predict the
log2-transformed RPKM [log 2 (RPKM + 1)] gene expression
levels and account for gene strandedness. The transcriptional
start site (TSS) was identified using RefSeq annotations (re-
lease v210) ( 44 ) for each gene. Our final dataset included a
total of 18 955 genes. 

Promoter model 

Our promoter model is a custom convolutional neural net-
work, similar in architecture to DeepChrome ( 45 ). The model
takes in a symmetrical 6000 base-pair genomic window av-
eraged at 100 base-pair bins, centred on the TSS of the gene
of interest. This 6000 base-pair window was used as a lenient
cut-off to include all relevant local regions. The model archi-
tecture is composed of three standard convolutional blocks.
These blocks each consist of a 1D convolutional layer, batch
normalization, rectified linear unit (ReLU) activation, max-
pooling and dropout. This was followed by two fully con-
nected blocks, which have dropout (in the first block), a dense
layer, ReLU activation and a final output layer with linear
activation. The convolutional blocks and their sliding win-
dow converted the histone mark signal into a position-wise
representation highlighting genomic loci that correlate with
expression. The fully connected blocks scaled down the size
of the representation, to finally produce a single score repre-
senting the gene’s RPKM. The size of each layer is provided
in our github repository ( https:// github.com/ neurogenomics/ 
chromexpress ) ( 46 ). 

Distal model 

Our distal model architecture was based on the Chromo- 
former model ( 17 ). This is an attention-based model which 

uses cell type-specific promoter capture Hi-C data to iden- 
tify interacting regions in a 40 000 base-pair genomic window 

centred on the TSS. This approach captures the histone mark 

signal both at the TSS and at putative cis- regulatory regions.
The model has three independent modules at different resolu- 
tions (100, 500 and 2000 base-pairs), producing a multi-scale 
representation of the histone mark landscape. Each module 
goes through a transformer block before being combined and 

passed through a full-connected block with ReLU activation 

and a final output layer with linear activation. The architec- 
ture of the model is discussed in more detail in the original 
publication ( 17 ). 

Model training 

The same model training approach was used for both the pro- 
moter and distal model. Model training and evaluation was 
based on a 4-fold cross-validation regime to give a stronger 
estimate of model performance. The total 18 955 genes were 
split into four sets, 5045, 4751, 4605 and 4554 respectively,
with genes from the same chromosome in the same split to 

avoid data leakage ( 47 ). For every fold, one set was used as 
the blind test set, while the other three sets were used for model 
training and validation. Performance on the test set for each 

fold was measured with Pearson’s correlation coefficient. A 

separate model was trained for each histone mark, cell type 
and cross-validation fold combination. 

The models were trained using the ADAM ( 48 ) optimizer 
with default parameters with a batch size of 64 over a max- 

https://github.com/neurogenomics/chromexpress
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mum of 100 epochs. An early stopping regularization was
mplemented based on the model’s validation loss with a pa-
ience of twelve epochs. The initial learning rate was set at
.001 and decayed by a factor of 0.2 when the loss did not
mprove after a patience of three epochs. Mean squared error
as used as the loss function. 

istone mark levels 

istone mark occupancy was measured separately for our
romoter and distal models and for each cell type, histone
ark and cross-validation fold. It was measured as the av-

rage log 2 -transformed, 100 base-pair binned read depth of
he histone mark signal. For the promoter model, this signal
as taken from the 6000 base-pairs around the TSS of each

ene and for the distal model, from the full 40 000 base-pairs.

ene expression state 

istone mark occupancy was measured for both active and
nactive genes. A gene was defined as active or inactive based
n whether its expression level was above or below the median
or that cell type. This calculation was performed for each cell
ype independently. This approach was first implemented in
eepChrome ( 45 ) and has been frequently used in the litera-

ure ( 17 , 45 , 49 , 50 ). 

orrelation analysis 

e measured agreement in model performance for both our
romoter and distal models by matching the cross-validation
old and cell type for each model trained on a (or pair of)
ifferent histone mark(s). The Pearson correlation coefficient
as used to quantify agreement. The performance across dif-

erent cell types and folds for each mark (or pairs of marks)
as aggregated to get the reported mean Pearson R and stan-
ard deviation. When comparing to the distal model based on
ll histone marks, the mean performance for each cell type –
fter aggregating based on the different folds – was used to
eport mean Pearson R and standard deviation. 

n silico perturbation of histone mark activity levels 

n silico histone mark perturbation was performed on the
istal model trained on a single mark. Although we have
rained Chromoformer with multiple histone marks as input,
e chose to use it trained on a single mark for the perturba-

ion analysis since perturbing one mark will likely affect the
istone mark occupancy of other marks in the same region
hich would not be possible to accurately account for in the
odel. 
We selected one active and one repressive mark which

re found at both promoter and distal regulatory elements
H3K27ac and H3K27me3. Perturbation experiments were

arried out on active genes for the active mark model and in-
ctive genes for the inactive mark model (see the ‘Gene expres-
ion state’ section in the ‘Materials and methods’ section), to
easure the effect on expression of reducing the levels of the
istone mark. The predictions from the different k-fold ver-
ions of the model were averaged, similar to the approach
ommonly used in sequence to expression models ( 19 ,51–
3 ). For the promoter histone signal, the full 6000 base pairs
round the TSS were perturbed, whereas for the distal his-
one signal, bins of 2000 base pairs across the 40 000 base
air receptive field were perturbed iteratively (similar to the
approach for DNA sequence perturbation used by the ge-
nomic deep learning model CRÈME ( 54 ). The implemented
perturbation levels were between 0 and 1 inclusively in 0.1
steps. The code to perform the in silico histone mark pertur-
bation is available on our github repository ( https://github.
com/ neurogenomics/ chromexpress ) ( 46 ). 

As well as averaging the predictions from the different k-
fold versions, we also tested the correlation between the differ-
ent folds to ensure the model is learning consistent regulatory
code. Moreover, we benchmarked this concordance against
Borzoi ( 19 ), a genomic deep learning model with the current
largest receptive field of 524 000 base pairs. Here, for a fair
comparison, we only tested Borzoi’s concordance in the cen-
tre 40 000 base-pairs to match Chromoformers receptive field,
for the RNA predictions in the same cell types as those used in
our analysis and added up to 500 random genetic variants to
the sequences of 1000 genes to match our perturbation test. 

In silico perturbation enrichment in quantitative 

trait loci studies 

The averaged in silico perturbation experiments on the ac-
tive (H3K27ac) model for each cell type were filtered to those
> 6000 base-pairs upstream and 4000 base-pairs downstream
of the TSS to concentrate on distal, cell type-specific regula-
tory regions as opposed to promoter regions. To control for
the greater effect of changes in gene bodies (Figure 6 E), which
have a median length of ∼25 000 base pairs ( 55 ) – longer than
the downstream receptive field of the model – these predic-
tions were sorted based on their predicted change in expres-
sion and split into deciles separately for upstream and down-
stream regions. 

The fine-mapped expression quantitative trait loci (eQTL)
data based on the UK Biobank population was sourced from
Wang et al., 2021 ( 56 ). Causal single nucleotide polymor-
phisms (SNPs) were identified from those in linkage disequi-
librium (LD) using FINEMAP v1.3.1 ( 57 ) and SuSiE v0.8.1
( 58 ). The resulting fine-mapped SNPs were filtered to those
with a SuSiE causal probability [posterior inclusion probabil-
ity (PIP)] > 0.9 in the tissue of interest and with a PIP < 0.1
in other tissues to get just the high confidence, tissue-specific
fine-mapped SNPs. The ROADMAP cell types were matched
to five of the tissues used in eQTL study where the tissue as-
sayed were identical across the two (available on our github
repository: https:// github.com/ neurogenomics/ chromexpress )
( 46 ). 

To test for enrichment of the fine-mapped, tissue-specific
SNPs, a bootstrap sampling experiment was implemented
where the proportion of SNPs found in each decile were com-
pared against 10 000 randomly sampled regions from all
deciles. P -values were derived and adjusted using false discov-
ery rate (FDR) correction for multiple testing. 

Since the distal model uses Hi-C chromatin interaction
data as input, we also ran this eQTL enrichment test on the
matched cell type and gene, significant promoter capture Hi-
C interactions (2000 base-pair resolution) to compare against
the model’s enrichment performance. To match the model’s
tested regions, the chromatin interaction data was filtered
to just those upstream of the gene. Furthermore, we bench-
marked against the regions of maximum histone mark activity
for each gene up to 20 000 base-pairs upstream and down-
stream of the TSS, averaged at 2000 base-pairs to match the
Hi-C and model approach, and also against a proximal loci

https://github.com/neurogenomics/chromexpress
https://github.com/neurogenomics/chromexpress


6 Nucleic Acids Research , 2024 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkae1212/7921050 by guest on 13 D

ecem
ber 2024
of the 6000 base-pairs just upstream or downstream of the
TSS. Scripts detailing the approach are available on our github
repository ( https:// github.com/ neurogenomics/ chromexpress )
( 46 ). 

In silico perturbation disease enrichment 

To test for disease enrichment, the top decile of the same av-
eraged in silico perturbation experiments on the active model,
filtered to just those upstream or downstream of the TSS, were
considered. For this analysis, predictions in the liver and neu-
ronal progenitor cells (NPCs) were used due to their poten-
tial respective relationships with liver and neuronal diseases.
A third group of regions comprising the top decile across all
cell types was included to look for cell type-consistent disease
enrichment. 

Summary statistics for genome-wide association studies
(GWAS) for liver diseases – non-alcoholic fatty liver disease
(NAFLD) ( 59 ) and hepatitis ( 60 ), glial diseases – Parkin-
son’s ( 61 ) and Alzheimer’s ( 62 ) and neuronal diseases – amy-
otrophic lateral sclerosis ( 63 ), schizophrenia ( 64 ), autism spec-
trum disorder ( 65 ) and bipolar disorder ( 66 ) were down-
loaded from the IEU GWAS portal ( 67 ) and the BioStudies
database ( 68 ) and were uniformly processed with MungeSum-
stats v1.11.3 ( 69 ) (default settings, converting build to hg19
where necessary and saving in ‘LDSC’ format). 

We applied stratified LD score regression (s-LDSC) ( 70 )
v1.0.1 ( https:// github.com/ bulik/ ldsc ) to test for disease en-
richment. Specifically, annotation files for each of the three
groups of genomic loci were first created with Phase 3 of the
1000 genomes reference. Followed by the generation of LD
scores with a window size of 1 centiMorgan (cM) i.e. ∼1 mil-
lion base pairs, filtering to HapMap3 SNPs to match the base-
line model. Finally, the enrichment analysis was run for the
GWAS summary statistics across the three groups as well as
those in the baseline model whilst excluding the major histo-
compatibility complex (due to the known difficulties predict-
ing LD in this region) ( 70 ). 

Results 

Active histone marks prove most informative at 
promoter regions 

We first focused on the performance of histone mark levels
from the promoter regions of the gene of interest using our
promoter model (Figure 1 ). As a naïve, baseline performance
measure we compared performance against absolute correla-
tion of histone mark and gene expression. Each histone mark
was averaged at different local distances around the transcrip-
tional start site (1500, 3000 and 6000 base-pairs) to capture
the best possible promoter correlation. Our promoter model
outperformed these baselines for all histone marks, which
was largely expected due to neural network’s ability to cap-
ture non-linear relationships, with notably better performance
in regressive marks. Moreover, the lenient inclusion of 3000
base-pairs up and down stream of the TSS in the promoter
model led to improved performance over a smaller region
more focused on the putative gene promoter functional re-
gions, i.e. 2500 base-pairs upstream and 500 base-pairs down-
stream of the TSS ( Supplementary Figure S1 ). 

Overall, we found H3K4me3, a mark located in active pro-
moter regions ( 25 ), to be the best performing from our pro-
moter model (Figure 1 A). Moreover, active promoter marks
H3K4me3, H3K27ac ( 37 ) and H3K9ac ( 10 ) made up the 
three top performing marks, all with a Pearson’s correla- 
tion above 0.73. The fourth best performing histone mark,
H3K4me1, is found at active enhancers ( 11 ). It likely per- 
formed worse than the other active marks due to the lim- 
ited range of the model, which only took into consideration a 
gene’s promoter region. 

Repressive marks proved less informative with H3K9me3 

( 27 ), H3K27me3 ( 30 ) and H3K36me3 ( 71 ) making up the 
three worst performing marks. Importantly, there was high 

variability in performance across the histone marks with a 
correlation difference of 0.25 between the best active and 

worst repressive mark (range of Pearson correlation coeffi- 
cients: 0.52–0.76). 

The predictive performance of active and 

repressive marks differ based on cell state at 
promoter regions 

Splitting the models’ performance across the different cell 
types highlighted histone mark groups with similar variations 
in their scores across cell types (Figure 1 B). This is most no- 
table for active promoter marks (H3K4me3, H3K9ac and 

H3K27ac). To formally evaluate this trend, we calculated the 
correlation between the models’ predictions across the dif- 
ferent genes, cell types, histone marks and cross-validation 

folds (Figure 2 A). One distinct group of highly correlated 

histone marks were apparent (highlighted in blue in Figure 
2 A), corresponding to the active histone marks previously ob- 
served. Interestingly, H3K9me3 showed the lowest correla- 
tion with the other histone marks, including with H3K36me3 

and H3K27me3, the other repressive marks. The samples col- 
lected for Roadmap ( 16 ) can be classified into those taken 

from ESCs, cells differentiated from ESCs, adult bulk tissues 
and cancer cell lines ( Supplementary Table S1 ). Active histone 
mark activity levels were significantly more predictive of ex- 
pression in ESC than primary tissues whereas the opposite 
was noted for repressive histone mark activity levels which 

was more predictive in primary tissues than ESC (Figure 2 B).
The multi-modal performance, visible in Figure 2 B, is the re- 
sult of a combination of the histone mark and cell type being 
tested ( Supplementary Figure S2 ). These results indicated that 
the most accurate method by which to predict gene expres- 
sion from the promoter region depends on the extent to which 

the cell type of interest has differentiated – active marks like 
H3K4me3, H3K9ac and H3K27ac were most predictive for 
cells at earlier stages of their differentiation process, includ- 
ing ESCs. In contrast, repressive marks, like H3K9me3, fared 

better in fully differentiated tissues or cells. 

Higher histone mark levels result in better 
predictive performance at promoter regions 

We first queried whether the promoter model’s performance 
was just a result of the quantity of histone mark signal 
observed, rather than learnt histone mark and cell type- 
specific regulatory relationships. H3K4me3 did follow this re- 
lationship with the highest levels of activity ( Supplementary 
Figure S3 A), best performance and positive correlation be- 
tween them ( Supplementary Figure S3 B and C). However, on 

other marks, including H3K27ac, the model showed consis- 
tent performance irrespective of levels of training or test activ- 
ity ( Supplementary Figure S3 B and C). Moreover, H3K27me3 

displayed a negative relationship, where more activity led to 

https://github.com/neurogenomics/chromexpress
https://github.com/bulik/ldsc
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1212#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1212#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1212#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1212#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1212#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1212#supplementary-data
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Figure 1. The performance of the promoter model shows the best gene expression predictions based on active histone marks H3K4me3, H3K27ac and 
H3K9ac. ( A ) Promoter model performance (pale blue) measured by the Pearson correlation coefficient on the blind test sets across each histone mark. 
Also shown is the absolute correlation of each histone mark with expression at different regions around the transcriptional start site (1500, 3000 and 
60 0 0 base-pairs) to act as a baseline performance measure. The whiskers represent the standard deviation across the different cell types and the 4-fold 
cross-validation. ( B ) Promoter model performance split by different cell types from Roadmap. 
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orse performance. If simply more histone mark activity led
o better performance overall, a strong correlation would have
een observed for all histone marks. 
To investigate what was driving the difference in perfor-
ance and how this related to active and repressive his-

one marks in the different cell states, we measured the av-
rage histone mark levels in the promoter regions for highly
nd lowly expressed genes (Figure 3 , see the ‘Materials and
ethods’ section for details). We observed a strong corre-

ation between model performance and histone mark levels
or active histone marks in highly expressed genes, and con-
ersely, for repressive marks in lowly expressed genes, indi-
ating that the model learns the functional significance of
he different histone marks (Figure 3 A). For highly expressed
enes (Figure 3 B), repressive marks, H3K9me3, H3K36me3
nd H3K27me3, had higher histone mark levels in ESCs
han primary tissues (although for H3K9me3 this was not
ignificant after multiple test correction). Conversely, active
arks, H3K4me3, H3K9ac and H3K27ac, showed varying

ctivity across primary tissues and ESCs. For lowly expressed
enes (Figure 3 C), histone mark levels tended to be higher
in ESCs than in primary tissues across histone marks. Over-
all, our analysis highlighted that higher histone mark lev-
els in a gene where the expression status matched the func-
tion of the histone mark (active versus repressive), led to bet-
ter performance of the model. RNA-seq typically has a bias
for 3 

′ ends, which might lead to underestimation of abun-
dance of some long transcripts ( 72 ,73 ). To account for this,
we also tested whether there was a bias in our model’s pre-
dictions based on transcript lengths ( Supplementary Figure 
S4 ). There appeared to be no relationship, suggesting our
model’s performance is not biased against genes with long
transcripts. 

Active marks are most predictive in the distal 
model 

To consider histone mark levels outside of the genes’ pro-
moter regions, we next tested a model architecture with a
much larger receptive field (up to 40 000 base-pairs around
the TSS). We used Chromoformer ( 17 ), a transformer-based
architecture, which accounts for distal histone mark levels,

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1212#supplementary-data
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Figure 2. The predictive performance of the promoter model across samples clusters by histone mark function. ( A ) Correlation matrix of the promoter 
model’s predictions by the different histone marks across each gene, cell type and cross-validation fold. H3K4me3, H3K9ac and H3K27ac were 
characteriz ed b y high positiv e pairwise correlations (highlighted in blue). Bars along the y -axis sho w the hierarchical clustering dendrogram. ( B ) Violin plot 
of the model’s performance on active and repressive histone marks measured by their Pearson correlation coefficient on the blind test sets. The cell 
type performance is grouped by the cell state — ESC, ESC-derived cell, adult primary tissue or cancer cell line. A Wilcoxon rank-sum test was used to 
compare ESC and primary tissue performance for active and repressive marks. Significance was based on a FDR correction for multiple testing, with 
P -value indicator: * < 0.05. 
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weighting important genomic regions using cell type-specific
DNA interaction data. We trained this distal model on each
single histone mark and benchmarked the performance across
histone marks, and also against the performance when trained
on all seven histone marks combined (Figure 4 A). Again, we
found H3K4me3, H3K9ac and H3K27ac to be the top three
performing marks with very little difference in overall perfor-
mance between them (mean Pearson R of 0.762, 0.757, and
0.749, respectively). All three histone modifications are active
marks while only H3K27ac ( 37 ) is found at both promoters
and distal regulatory regions (enhancers). 

Receptive field expansion and multi-histone mark 

predictions yield diminishing returns 

The performance of incorporating distal histone mark levels
in a model consistently but marginally increased the Pearson
correlation coefficients. The range of improvement in correla-
tion varied from 0.01 to 0.15, despite the substantial increase
in receptive field and model architecture complexity (Figure
4 C). Compared to the promoter model, although the same hi-
stone mark performance ranking was observed, marks which
are known to affect genomic locations outside of promoter 
regions showed the highest relative improvement, specifically 
H3K36me3, H3K27me3 and H3K27ac (Figure 4 C and Table 
1 ). 

The relationship between histone mark type and cell state 
found for the promoter model, where active histone marks 
were more predictive in ESC and repressive in primary tis- 
sues, was similarly observed for the distal model (Figure 4 B 

and Supplementary Figure S5 A and B). Moreover, we investi- 
gated the histone mark levels across the full 40 000 base-pair 
receptive field of the distal model and found the same trend as 
for the promoter model where the model picks up on known 

biology of histone mark prevalence: We observed strong cor- 
relations between model performance and histone mark levels 
for active histone marks around highly expressed genes, and 

conversely, for repressive marks around lowly expressed genes 
( Supplementary Figure S5 C). 

To further interrogate the contributions of histone marks 
to the prediction of expression in our distal model, we bench- 
marked performance across pairs of histone marks with 

the top three performing marks, H3K4me3, H3K9ac and 

H3K27ac (Figure 5 A). All combinations with the top three 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1212#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1212#supplementary-data
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Figure 3. Higher histone mark le v els are associated with better predictive performance in specific gene expression states. ( A ) Correlation between the 
histone mark le v els and model performance for each cell type, k-fold combination. This is split by repressive and active marks, as well as highly and 
lo wly e xpressed genes. T he histone mark activity is firstly a v eraged across the receptiv e field of the model then it is a v eraged separately f or high / lo w 

expression genes for every cell for each of the 4-fold versions of the model. ( B ) Violin plot of histone mark levels measured by the average 
log 2 -transformed, read depth in the promoter region (60 0 0 base-pairs around the transcription start site) for highly expressed genes. The cell types are 
grouped by the cell state – ESC, ESC-derived cell, adult primary tissue or cancer cell line and averaged at the level of cell type and k-fold. ( C ) Average 
histone mark le v els f or lo wly e xpressed genes. Significance w as based on the FDR multiple test correction, with P -v alue indicators: **** < 1e-4, *** 
< 1e-3, ** < 1e-2, * < 0.05, ns ≥ 0.05. 
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istone marks were better performing than any of the top
hree marks by themselves. However, this improvement was
elatively small ( < 0.04 mean increase in Pearson R for the
est histone mark combination) and was only significant for
 handful of combinations. 

This result highlights that incorporating additional his-
one marks in the prediction led to a consistent, albeit small,
oost in performance, regardless of the histone mark type
active or repressive). This became most evident when we
ombined pairs of the top three performing marks: all three
re active marks and two are confined to promoter regions,
ut their combination still resulted in improved performance
ver the individual marks (Figure 5 B). Notably though, com-
inations including H3K27ac, an enhancer mark, showed
reater improvement over combinations including only pro-
oter marks. Importantly, combining the top three marks
ith another mark showed a mean improvement of 0.043,

ompared to a mean improvement of 0.062 when using all
arks (red dashed line in Figure 5 A). This means that adding

n additional five histone marks to the distal model would in-
rease performance (Pearson R) by another 0.02, highlighting
he diminishing returns of including additional histone mark
nformation and giving insight for researchers looking to best
capture gene regulation in their cell type of interest with min-
imal experimental work in the future. 

Our analysis further highlighted the combinatorial predic-
tive capabilities of H3K36me3 (Figure 5 A and C). H3K36me3
is a repressive mark ( 74 ) with strong distal effects on gene
expression. This mark showed the largest improvement from
the promoter to the distal model (Figure 4 C) and when com-
bined with the top three scoring histone marks, was its best
performing pair, even when compared to combinations of
the top three performing marks (Figure 5 A) and far im-
proved performance compared to the addition of the other
marks (Figure 5 C). Conversely, when paired with the repres-
sive mark H3K27me3, H3K36me3 did not result in the best
performing pair ( Supplementary Figure S6 ) but did still im-
prove performance on the individual mark. This highlights
the complementary information H3K36me3 provides in addi-
tion to the top three performing active promoter and enhancer
marks. 

We also investigated whether the performance increase for
the top three marks when coupled with H3K36me3 was
driven by bivalent genes. Bivalent genes are characterized by
the presence of both repressive and active histone mark sig-
nals at their promoter and are known to silence develop-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1212#supplementary-data
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Figure 4. A ctiv e histone modifications perf ormed best at predicting gene expression in the distal model. ( A ) Distal model perf ormance w as measured b y 
the Pearson correlation coefficient on the blind test sets for each histone mark. The whiskers represent the standard deviation across the different cell 
types and the 4-fold cross-validation. The red dashed line and shaded box shows the model’s mean performance and standard deviation when trained on 
all se v en histone marks together. ( B ) P redictiv e perf ormance is sho wn split b y the different cell types in R oadmap. ( C ) T he impro v ement in perf ormance 
for each histone mark by expanding the receptive field outside of the promoter region with the distal model. The largest increase in performance is 
observ ed f or H3K36me3. T he whisk ers indicate the standard de viation across cell types and f olds. 
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mental genes in ESCs while keeping them poised for activa-
tion ( 75 ). However, the model performance in bivalent genes
for ESCs did not notably improve over non-bivalent genes
( Supplementary Figure S7 ). 

In silico histone mark perturbation prioritises 

functionally relevant genomic loci and disease 

relevant cell types 

Up to this point, our work has shown the performance of
chromatin to expression deep learning models and how they
encode known biological relationships between histone mark
levels and expression. However, none of this highlights new
information about gene regulation or disease. In silico pertur-
bation enables the investigation of the effect on gene expres-
sion of varying histone mark levels in a cell type and gene-
specific manner that would be impractical to undertake ex-
perimentally in vivo . This analysis was inspired by the recent
development of systematic histone mark editing toolkits to
measure the relationship with expression ( 76 ) and follows a 
comparable approach of epigenomic editing but in silico . Our 
in silico perturbation experiments enable the systematic, high 

throughput quantification and comparison of the effect of hi- 
stone mark activity at different genomic loci on gene expres- 
sion. 

We first investigated the effect of in silico perturbation ex- 
periments at an aggregate level, varying levels of histone mark 

activity, as well as distances from the TSS using the distal 
model trained on one active (H3K27ac) and one repressive 
(H3K27me3) mark (Figure 6 ). We used models trained on sin- 
gle marks to avoid issues where perturbing one type of his- 
tone mark will affect another mark’s activity in the region.
Here, we permuted either the entire TSS or the distal regions 
in 2000 base pair bins (see the ‘ In silico perturbation of his- 
tone mark activity levels’ section in the ‘Materials and meth- 
ods’ section). Furthermore, we averaged predictions across 
the four k-fold model versions, a standard approach in silico 

mutagenesis experiments for genomic deep learning models 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1212#supplementary-data
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Figur e 5. P airwise combinatorial perf ormance of distal model in predicting gene e xpression based on tw o histone marks. ( A ) Paired distal model 
perf ormance w as measured b y the Pearson correlation coefficient on the blind test sets across combinations of histone marks. T he whisk ers represent 
the standard deviation across the different cell types and the 4-fold cross-validation. Data is averaged at the level of cell type and k-fold. The red dashed 
line and shaded bo x sho ws the model’s mean performance and standard deviation when trained on all se v en histone marks together. Significance based 
on FDR multiple test correction, with P -value indicators: ** < 1e-2, * < 0.05, ns ≥ 0.05. ( B ) Performance improvement for combinations of the top three 
performing marks from the single histone mark distal model. ( C ) Performance improvement over the single histone mark distal model for combinations 
using H3K36me3 versus the average of the other marks. 
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 19 , 51 , 53 ). This step may not have been required given the
otably high correlation between the different models’ pre-
ictions ( Supplementary Figure S8 A), which was on par with,
f not slightly better, than that of the genomic deep learning
odel Borzoi ( 19 ) ( Supplementary Figure S8 B). This indicates

hat models trained on histone mark levels show a similar abil-
ty to learn consistent regulatory code across differing training
ets compared to that of their genomic counterparts. 

For the active model, we noted a clear relationship be-
ween reducing histone mark levels and large predicted de-
reases in expression at the promoter (Figure 6 A) while we
ound only minor decreases at distal regulatory regions (Fig-
re 6 B). This matches the known functional relationship be-
ween promoter and enhancer activity with expression and
lso the in silico perturbations of DNA sequence in genomic
eep learning models ( 51 ). However, reducing repressive his-
one mark levels showed little relationship with increased ex-
ression (Figure 6 C abd D) which may be due to the repres-
ive mark’s relatively worse performance overall (Figure 4 A).

oreover, it highlights how the lack of a repressive mark is
ot sufficient to confer expression to a gene, but rather it is
additionally associated with the presence of an active mark
which we seen through the performance of the repressive mark
H3K36me3 in combination active marks (Figure 5 C). The re-
lationship between perturbation and distance and their effect
on expression is more apparent when we view the predicted
quantile change in expression by distance from the TSS while
removing histone mark activity completely (Figure 6 E and F).
Here, we saw the highest predicted change near the TSS, re-
ducing as distance to the TSS increases for both the active and
repressive model. Interestingly, this reduction was not sym-
metrical upstream and downstream of the TSS, with down-
stream loci having a greater effect on expression on average.
We believe this was a result of the length of the gene body
[median length ∼25 000 base pairs ( 55 )], which would incor-
porate the entire downstream receptive field of the model for
most genes and thus lend to greater importance for RNA-seq
predictions rather than assays of promoters like CAGE-Seq
( 77 ) or transcription initiation like PRO-seq ( 78 ). Our analysis
highlighted that on average, perturbations to histone mark sig-
nals in the gene body had a greater predicted effect than distal
regulatory regions upstream. These results held consistently

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1212#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1212#supplementary-data
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Figure 6. Effect of in silico histone mark perturbation on expression. The effect on predicted expression (y-axis) of changing the proportional levels of 
measured histone mark activity (x-axis) for all cell types and genes, a v eraged across the four k-fold models. The distal model trained on a single histone 
mark was used to measure the effects of a perturbed active mark – H3K27ac ( A,B ) – or a repressive mark – H3K27me3 ( C,D ) – in 20 0 0 base pair bins for 
distal or at the promoter. ( E,F ) The effect of distance on expression change is shown when the histone mark activity is completely removed at a specific 
location for the active ( E ) or repressive ( F ) mark. The distribution of all gene expression changes in all cell types split into 20 quantile bins. 
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across all cell types and cell states for the active marks. How-
ever, this was not the case for repressive marks, which differed
vastly by cell state ( Supplementary Figure S9 ). We intention-
ally chose an active (H3K27ac) and repressive (H3K27me3)
mark for analysis that are known to regulate expression out-
side of the TSS. We confirmed that a mark that is primarily as-
sociated with the TSS (H3K4me3) has higher predicted change
in expression in the TSS and lower change downstream and
in the gene body ( Supplementary Figure S10 ). 

We next considered whether these in silico perturbation ex-
periments could be used to gain insight into the cell type-
specific regulatory function in gene expression and disease,
using genetic variants to test for functional and disease enrich-
ment (Figure 7 ). Given that the active model captured known
biological relationships in the in silico perturbation, we fo-
cused on this model’s perturbation experiments. Moreover, we
only considered upstream predictions to capture distal regu-
latory regions which vary across cell types as opposed to pro-
moter and gene body signals. 
To test the model’s ability to capture functional loci we used 

a large scale, tissue-specific, fine-mapped eQTL set based on 

the UK Biobank population ( 79 ). First, we split the loci into 

deciles sorted based on the model’s predicted change in ex- 
pression (decile 10 having the largest predicted effect). We im- 
plemented a bootstrap sampling test to compare each decile 
to randomly sampled upstream and downstream loci for en- 
richment of the fine-mapped eQTLs (see the ‘ In silico per- 
turbation enrichment in quantitative trait loci studies’ sec- 
tion in the ‘Materials and methods’ section). We found sig- 
nificant enrichment for the top decile for all but one cell 
types tested (Figure 7 A), indicating that the model correctly 
predicted the loci which contributed most to the cell type- 
specific gene expression. Furthermore, to provide benchmarks 
against alternative loci prioritization methods, we tested how 

much the distal model improves upon the (i) regions of high- 
est histone mark activity, (ii) Hi-C chromatin interacting 
loci, and (iii) proximal loci [ ≤6000 base-pairs up or down 

from the TSS, inspired by Wang et al.’s distance baselines 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1212#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1212#supplementary-data
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Figure 7. In silico histone mark perturbation experiment highlights functional and disease enrichment. ( A ) Upstream and downstream in silico histone 
mark perturbation experiments from the active model were sorted into deciles based on their predicted change in expression (x-axis). Each decile was 
tested for enrichment of fine-mapped eQTL interactions in matched cell types and compared against bootstrap sampling random upstream loci 10 000 
times to generate P -values of enrichment (y-axis). ( B ) FDR P -value enrichment scores (colour) and coefficient Z-score (size) for the top decile (based on 
their predicted change in expression) derived from all cell types (non-cell type-specific), liver tissue or NPCs (x-axis). Enrichment tests were conducted 
with s-LDSC and genetic variants relating to different diseases (y-axis). FDR adjustment was applied for all GWAS tested. 
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 80 )] for fine-mapped eQTL enrichment in these same loci
 Supplementary Figure S11 ). With the exception of the lung
issue sample, the model’s loci prioritization approach out-
erformed the region of maximum histone mark activity and
i-C in all tissues ( Supplementary Figure S11 A and B) and
atched the performance of the ≤6000 base-pairs approach

 Supplementary Figure S11 C). 
We next tested whether these loci also harbour known

isease related genetic variants. We used s-LDSC ( 70 ) with
WAS for eight different liver and brain diseases ( 59–66 ).
est regions were based on the top cell type-specific decile
ith the largest predicted effect for liver and NPCs, as well
s the averaged top decile across all cell types of upstream
nd downstream loci (Figure 7 B). S-LDSC measures enrich-
ent of disease genetic variants accounting for the obscuring
ature of LD ( 70 ). Here, we used the neuronal cells and liver
issue for their predicted relationship with brain and liver dis-
ases, respectively. We used the top decile for all cell types to
ook for non-cell type-specific disease enrichment. While none
f the expected cell type-specific significant enrichments were
etected, the NAFLD GWAS was tending towards significance
n liver tissue. Moreover, one significant association for bipo-
ar disorder was detected after multiple testing correction for
he non-cell type-specific disease enrichment, highlighting the
unctional importance to disease of regions where changes in
he histone mark activity levels was predicted to have a large
ffect on expression across cell types. 

Results of the in silico perturbation analysis can be visual-
zed and investigated locally by approximating the effect his-
one mark activity at each genomic locus has on the predicted
ene expression by calculating the partial derivatives of the
odel with respect to the input, i.e. the gradient on the input

 81 ). Using this approach, we uncovered a regulatory region
pstream of DSTN in the lung carcinoma cell line (Figure 8 ).
his locus was in the top decile of predicted effects on expres-
ion for this cell type from the in silico perturbation analysis.
The region is shown to have a small effect across the three in-
put resolutions our distal model uses prior to perturbing the
H3K27ac signal, but once removed, has a large effect. This
locus contains the fine-mapped SNP rs611572 from the UK
Biobank population eQTL analysis in a matched cell type ( 79 )
and DSTN has been noted to promote malignancy in lung
adenocarcinoma. It has potential as a prognostic marker and
therapeutic target ( 82 ), confirming its predicted functional im-
portance based on our findings. Of note, we see a similar re-
lationship when visualizing the embedding attention matrix,
where the weights for this region go to zero after perturba-
tion, indicating the effect of the lack of histone mark signal
( Supplementary Figure S12 ). 

Discussion 

We present the most comprehensive deep learning study of the
relationship between histone mark levels and transcription to
date. We considered multiple cell types and histone marks at
differing receptive fields and demonstrated how the prediction
of gene expression is dependent on three key contributing fac-
tors – histone mark function, regulatory distance and cellular
states. 

For our analysis, we used the Roadmap ( 16 ) data reposi-
tory, benefiting from the standardized experimental approach.
We investigated the genome-wide activity of seven histone
marks across eleven cell types. For the histone mark ChIP-Seq
read alignments, we subsampled to 30 million reads to en-
able a fair comparison across marks. While for gene expres-
sion, we utilized RPKM values which measures the mRNA
abundance of transcripts normalized by gene length, avoid-
ing any potential within sample bias. Since model predictions
were made in the same cell type as training, there was no
need to standardize gene expression levels across cells ( 83 ).
The use of mRNA abundance here is one limitation of the
study as it may not be reflective of true cellular regulation.

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1212#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1212#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1212#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1212#supplementary-data
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Figure 8. In silico histone mark perturbation visualized for DSTN in lung carcinoma cell line. Upstream in silico histone mark perturbation of DSTN in the 
lung carcinoma cell line using the distal model trained on the H3K27ac signal. T he e xperimental H3K27ac signal is shown along with an approximation of 
the effect each region of histone mark activity has on the prediction, calculated using the partial deriv ativ es of the model with respect to the input, 
before and after ablation of the H3K27ac signal in the noted region. The fine-mapped SNP rs611572 from the UK Biobank population eQTL analysis in a 
matched cell type is also shown ( 79 ). This region was chosen as the in silico perturbation analysis identified it in the top decile of predicted effects on 
e xpression f or this cell type. 
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RNA-seq read counts are impacted by mRNA turnover, sta-
bility and nuclear export, not solely deriving from transcrip-
tional changes ( 72 ,73 ). Thus, it is possible that the noted lim-
ited correlation between transcription and repressive histone
marks is a result of this (Figures 1 A and 4 A). For instance,
particularly stable mRNAs might obscure the effects of tran-
scriptional repression, potentially leading to underestimates
of the actual repressive contribution of histone marks at these
specific loci. Future work may benefit from investigating mea-
sures of transcription which avoid these issues, for example,
by profiling transcription initiation by assays such as precision
nuclear run-on sequencing (PRO-seq) ( 78 ). 

To ensure robust benchmarking results, we repeated train-
ing of both our promoter and distal models across a 4-fold
cross-validation, ensuring the test set genes were grouped by
chromosomes to avoid any data leakage ( 47 ) – where data in
the training set is related to data in the test set, artificially in-
flating model performance. To run each cell type, histone mark
or combination of histone marks, for each cross-validation
fold using both the promoter and distal models, was a com-
putationally intensive task. This resulted in 1276 training and
prediction iterations which were all run using an A100 80
GB GPU. To avoid overfitting over such a substantial number
of iterations, we automated hyperparameter tuning for both
models using a learning rate decay and early stopping regime,
holding out an independent validation set of genes for moni-
toring. 

Both our promoter and distal models were developed as
quantitative, regression models, predicting a gene’s log 2 RP-
KMs, which has been shown to yield better generalization and
interpretability than binary classification models ( 84 ). For the 
promoter model, following the same approach as past bench- 
marking work ( 84 ), we implemented an intentionally simple 
convolutional neural network architecture based a relatively 
small receptive field around the TSS to compare histone mark 

performance. On the other hand, our distal model, Chromo- 
former ( 17 ), was a transformer-based architecture accounting 
for distal histone mark levels in a weighted manner based on 

DNA interaction data. One limitation is the receptive field of 
our distal model which extends 40 000 base-pairs around the 
TSS. Although this is a large window and computationally 
intensive to include in such a model, it is a fraction of the 
known distance at which DNA interactions can occur. For ex- 
ample, Hi-C experiments capture cis- interactions up to 1 mil- 
lion base-pairs away ( 85 ). 

The results of our promoter region analysis showed that the 
active marks H3K4me3 and H3K9ac were the most predictive 
of gene expression (Figure 1 ). However, their optimal perfor- 
mance was dependent on the cell state, performing better in 

ESCs whereas repressive marks like H3K9me3 performed rel- 
atively better in adult primary tissues (Figure 2 B). We con- 
cluded that the stage of cell differentiation was the driving 
factor of performance for active and repressive marks: active 
marks performed better at early stages of lineage commitment,
i.e. ESCs, whereas repressive marks were more predictive in 

fully differentiated cells, i.e differentiated tissue. This relation- 
ship is in line with the distinctive ESC chromatin landscape,
which features more accessible DNA and less heterochromatin 

and correspondingly, less repressive and more active histone 
mark activity when compared with differentiated cells ( 86 ).
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he effect of repressive mark performance across different
ell states is further substantiated by our in silico permuta-
ion analysis ( Supplementary Figure S9 ). We observed a con-
istent relationship for active marks, where perturbations to
istone mark signals in the gene body had a greater predicted
ffect than distal regulatory regions. This pattern was only
eplicated for inactive marks in differentiated cell types. We
ypothesize that this relates to the lack of repressive signal in
he other cell states ( 86 ). 

Furthermore, we noted that for active genes, the relation-
hip between a histone mark’s levels and performance repli-
ated known biology: Observing a strong correlation for ac-
ive histone marks in highly expressed genes, and conversely
or repressive marks in lowly expressed genes (Figure 3 A).
his highlighted that higher histone mark levels were bene-
cial for the model, leading to greater predictive performance
n the correct context. In relation to histone mark levels at the
SS, we also noted that for inactive genes, histone mark activ-

ty is reduced with cell differentiation (Figure 3 B). The concept
hat cell lineage commitment leads to globally lower histone
ark levels has been previously noted ( 87 ). 
For our distal model, active marks H3K4me3, H3K9ac and
3K27ac were the best performing (Figure 4 A). Interestingly,

hese three marks, two of which are linked to the TSS of genes
hey regulate, outperformed H3K4me1 which is associated
ith distal enhancers ( 11 ). One possible explanation for this
as investigated in a recent study ( 51 ) which found that, when
redicting expression from DNA sequence, a similar attention
odel prioritized sequences at the promoter region over distal

egulatory regions. The reason being that given the multiple
hoice of enhancer and other regulatory regions and their rel-
tively small influence on gene expression, a model will pri-
ritize the information at the promoter region. We believe
he same effect could have contributed to our results whereby
he active promoter mark information contributed to expres-
ion to a greater degree than distal regulatory regions. This
ame relationship was clearly notable in our in silico pertur-
ation experiments (Figure 6 E and F). Moreover, given that
3K4me1 is indicative of poised rather than active enhancers

 11 ), it would presumably be less predictive of gene activity. 
A key point of our findings is the marginal return in perfor-
ances by: (i) Extending from an intentionally simple local
romoter model to an attention based, computationally com-
lex model which accounts for distal histone mark levels (Fig-
re 4 C), and (ii) Increasing the number of histone marks in-
luded in the model (Figure 5 B). We noted that understanding
he cell state (undifferentiated or fully differentiated) and the
ene state (highly or lowly expressed) of interest and choos-
ng the most appropriate mark for these had a greater impact
n performance than the number or receptive field of histone
ark levels considered. 
Comparing performance across the promoter and distal
odels, H3K27ac showed the biggest gain of the top three per-

orming marks (Figure 4 ). This was expected given its relation-
hip with active promoters and enhancer regions ( 37 ). How-
ver, its performance based solely in promoter regions was still
elatively strong, which was reassuring given the mark’s preva-
ence in complex disease research. 

We also trained our distal model on pairs of histone marks,
howing that the added performance of incorporating addi-
ional histone marks diminishes markedly after this point.
his result could benefit researchers wishing to capture tran-
cription in a cell type of interest from limited histone mark
information. The paired analysis also highlighted the strong
combinatorial performance of H3K36me3. This repressive
mark was the best performing choice as a pair with any of
our three top marks (Figure 5 A) and was the fourth best per-
forming mark of the single histone mark analysis (Figure 4 A).
H3K36me3 is a canonical mark of transcription, serving as
a binding partner for HDACs which prevent run-away tran-
scription of RNA polymerase II ( 35 ). H3K36me3 is gener-
ally enriched in gene bodies of mRNAs ( 34 ), outside of the
TSS, which may explain its relatively poor performance in
the promoter model and why the improvement with the dis-
tal model for this mark was the highest of any mark tested
(Figure 4 C). 

Finally, we performed an array of in silico histone mark
level perturbation experiments, showing the relationship be-
tween distance from the TSS and a regulatory region’s effect
on gene expression (Figure 6 ). Our analysis highlighted the
very high correlation for the in silico perturbations between
the different cross-validation fold models ( Supplementary 
Figure S8 ). A possible advantage of histone mark deep learn-
ing models over genomic deep learning models trained on
DNA sequence is that they offer an alternative to making sin-
gle base pair level changes such as genetic variants which are
notoriously difficult to interpret, particularly as the genomic
window considered by the model increases ( 19 , 53 , 54 , 87 ). For
example, Sasse et al. found that Enformer, a long-range ge-
nomic deep learning model, did a poor job of predicting the
effect of inserting multiple single nucleotide variants based
on personalized genomes, even predicting the wrong direc-
tion of effect up to 40% of the time ( 53 ). This work high-
lighted that the current training paradigm for genomic deep
learning models of training across the genome for variabil-
ity is insufficient to accurately capture the effect of genetic
variants. Moreover, these variants are subject to LD and as of
yet, it has not been proven that genomic deep learning mod-
els can accurately differentiate between causal genetic variants
and those in LD. By identifying genomic loci of interest based
on perturbing histone mark levels, our model captures signif-
icant enrichment of eQTLs in the most predictive regions, of-
fering an alternative to genomic deep learning models trained
on DNA. Additionally, these results based on epigenetic data
further underlines the functional importance of these eQTLs
(Figure 7 A). 

Furthermore, using these identified genomic loci, we de-
veloped a framework by which such models can be applied
to test for both functional and disease enrichment in a cell
type-specific manner (Figure 7 ). The results for the disease en-
richment did not recapitulate projected relationships for the
NPCs or liver, which could be a result of the imperfect cell
type matching, the limited overlap between the disease related
genetic variants and the relatively small window of upstream
genomic loci considered, or the observed differences in the
measured genetic effects on gene expression versus complex
traits ( 88 ). This highlights that further work on such mod-
els is needed, hopefully increasing the receptive field and us-
ing known affected cell types, to capture an association with
complex diseases. Importantly, a substantial overlap and large
genomic coverage of the loci considered are key recommen-
dations for s-LDSC analyses ( 70 ). This issue when capturing
complex phenotypic enrichment is not unique to these models
and is also a challenge with genomic deep learning models as
highlighted recently ( 52 ). Non-cell type specific genomic loci
predictive of gene expression were enriched for GWAS sig-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1212#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1212#supplementary-data
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nal for bipolar disorder, indicating the importance of cell type
consistent regulatory regions in complex disease. Importantly,
this analysis highlights the significance of these predicted ge-
nomic loci not only in functional genomics studies (Figure 7 A)
but also in disease (Figure 7 B). Past approaches such as ICE-
BERG, a pipeline that uses CUT&RUN replicates to create a
combined profile of binding events for H3K4me3, have been
previously used to uncover functionally relevant regulatory
events ( 89 ). However, our approach shows, for the first time,
how chromatin deep learning models can be perturbed to un-
cover genome-wide and cell type-specific functionally and dis-
ease relevant regulatory regions. 

Overall, our study shows that multiple factors influence
the performance of histone marks when predicting gene ex-
pression, something which had not explicitly been considered
by previous work ( 12–14 ). Our findings suggest that if one
wishes to investigate the TSS of genes, promoter-specific ac-
tive marks H3K4me3 and H3K9ac are the best options. Be-
yond the promoter region, active marks H3K4me3, H3K9ac
and H3K27ac are most predictive, especially in combina-
tion with the transcriptionally associated mark H3K36me3.
However, it is worth considering the cell state (differenti-
ated or early stages of lineage commitment) and the state
of the genes or interest (highly or lowly expressed) to have
a better understanding of the optimally predictive histone
marks. Importantly, more effort should be placed on using
these models to uncover new biological insights, particu-
larly for phenotypic and disease-based studies. Similar to ge-
nomic deep learning models, chromatin deep learning mod-
els are capable of capturing functionally relevant genomic
loci. 

Data availability 

The Histone mark ChIP-seq read alignments, RPKM gene
expression profiles were downloaded from the Roadmap
Epigenomics Web Portal ( https:// egg2.wustl.edu/ roadmap/
web _ portal/index.html ). The promoter capture Hi-C experi-
ments were obtained from the 3DIV database (available at
http:// 3div.kr/ ), specifically the tissue mnemonics H1, ME, TB,
MSC, NPC, LI11, PA, LG and GM. The UK Biobank fine-
mapped eQTL data were downloaded from the supplemen-
tary material of Wang et al . ’ s study ( 56 ). The summary statis-
tics were downloaded from the IEU GWAS portal ( 67 ) (IDs:
ieu-b-7, ebi-a-GCST90027158, ebi-a-GCST90027158, ebi-a-
GCST005647, ebi-a-GCST90091033, ebi-a-GCST90091033,
ebi-a-GCST90038627, ieu-b-5099, ieu-a-1185, ieu-b-5110)
and for hepatitis, from the BioStudies database ( 68 ) (ID: S-
BSST407). All reference datasets used to run s-LDSC ( 70 )
were downloaded following the links from the source ma-
terial: https:// github.com/ bulik/ ldsc . The model architectures
and all training and analysis scripts, along with scripts to
download and complete all pre-processing steps on the train-
ing data [sourced from Roadmap ( 16 ) and largely repli-
cated from Chromoformer’s scripts ( 17 )] are available at
https:// github.com/ neurogenomics/ chromexpress and https://
doi.org/ 10.5281/ zenodo.10940542 ( 46 ). The model results
and weights are available for download on figshare ( https:
// figshare.com/ account/ home#/ projects/ 201105 ). 
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