vignettes/docker.Rmd
docker.Rmd
mungesumstats is now available via DockerHub as a containerised environment with Rstudio and all necessary dependencies pre-installed.
First, install Docker if you have not already.
Create an image of the Docker container in command line:
docker pull neurogenomicslab/mungesumstats
Once the image has been created, you can launch it with:
docker run \
-d \
-e ROOT=true \
-e PASSWORD="<your_password>" \
-v ~/Desktop:/Desktop \
-v /Volumes:/Volumes \
-p 8787:8787 \
neurogenomicslab/mungesumstats
<your_password>
above with
whatever you want your password to be.-v
flags for your
particular use case.-d
ensures the container will run in “detached”
mode, which means it will persist even after you’ve closed your command
line session.If you are using a system that does not allow Docker (as is the case for many institutional computing clusters), you can instead install Docker images via Singularity.
singularity pull docker://neurogenomicslab/mungesumstats
Finally, launch the containerised Rstudio by entering the following URL in any web browser: http://localhost:8787/
Login using the credentials set during the Installation steps.
utils::sessionInfo()
## R Under development (unstable) (2022-12-07 r83413)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.1 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] MungeSumstats_1.7.10 BiocStyle_2.27.0
##
## loaded via a namespace (and not attached):
## [1] tidyselect_1.2.0 dplyr_1.0.10
## [3] blob_1.2.3 filelock_1.0.2
## [5] R.utils_2.12.2 Biostrings_2.67.0
## [7] bitops_1.0-7 fastmap_1.1.0
## [9] RCurl_1.98-1.9 BiocFileCache_2.7.1
## [11] VariantAnnotation_1.45.0 GenomicAlignments_1.35.0
## [13] XML_3.99-0.13 digest_0.6.31
## [15] lifecycle_1.0.3 ellipsis_0.3.2
## [17] KEGGREST_1.39.0 RSQLite_2.2.19
## [19] googleAuthR_2.0.0 magrittr_2.0.3
## [21] compiler_4.3.0 rlang_1.0.6
## [23] sass_0.4.4 progress_1.2.2
## [25] tools_4.3.0 utf8_1.2.2
## [27] yaml_2.3.6 data.table_1.14.6
## [29] rtracklayer_1.59.0 knitr_1.41
## [31] prettyunits_1.1.1 curl_4.3.3
## [33] bit_4.0.5 DelayedArray_0.25.0
## [35] xml2_1.3.3 BiocParallel_1.33.6
## [37] purrr_0.3.5 BiocGenerics_0.45.0
## [39] desc_1.4.2 R.oo_1.25.0
## [41] grid_4.3.0 stats4_4.3.0
## [43] fansi_1.0.3 biomaRt_2.55.0
## [45] SummarizedExperiment_1.29.1 cli_3.4.1
## [47] rmarkdown_2.18 crayon_1.5.2
## [49] generics_0.1.3 ragg_1.2.4
## [51] httr_1.4.4 rjson_0.2.21
## [53] DBI_1.1.3 cachem_1.0.6
## [55] stringr_1.5.0 zlibbioc_1.45.0
## [57] assertthat_0.2.1 parallel_4.3.0
## [59] AnnotationDbi_1.61.0 BiocManager_1.30.19
## [61] XVector_0.39.0 restfulr_0.0.15
## [63] matrixStats_0.63.0 vctrs_0.5.1
## [65] Matrix_1.5-3 jsonlite_1.8.4
## [67] bookdown_0.30 IRanges_2.33.0
## [69] hms_1.1.2 S4Vectors_0.37.3
## [71] bit64_4.0.5 systemfonts_1.0.4
## [73] GenomicFeatures_1.51.2 jquerylib_0.1.4
## [75] glue_1.6.2 pkgdown_2.0.6.9000
## [77] codetools_0.2-18 stringi_1.7.8
## [79] GenomeInfoDb_1.35.5 BiocIO_1.9.1
## [81] GenomicRanges_1.51.3 tibble_3.1.8
## [83] pillar_1.8.1 rappdirs_0.3.3
## [85] htmltools_0.5.4 GenomeInfoDbData_1.2.9
## [87] BSgenome_1.67.1 dbplyr_2.2.1
## [89] R6_2.5.1 textshaping_0.3.6
## [91] rprojroot_2.0.3 evaluate_0.18
## [93] Biobase_2.59.0 lattice_0.20-45
## [95] R.methodsS3_1.8.2 png_0.1-8
## [97] Rsamtools_2.15.0 gargle_1.2.1
## [99] memoise_2.0.1 bslib_0.4.1
## [101] Rcpp_1.0.9 xfun_0.35
## [103] fs_1.5.2 MatrixGenerics_1.11.0
## [105] pkgconfig_2.0.3